Build and study a simple model of oscillations arising from the interaction of excitatory and inhibitory populations of neurons. The firing rate of the excitatory neurons is v_E , and that of the inhibitory neurons is v_I and these are characterized by equations 7.50 and 7.51 from Dayan & Abbott. Set $M_{EE} = 1.25$, $M_{IE} = 1$, $M_{II} = 0$, $M_{EI} = -1$, $\gamma_E = -10$ Hz, $\gamma_I = 10$ Hz, $\tau_E = 10$ ms, and vary the value of τ_I . The negative value of γ_E means that this parameter serves as a source of background activity (activity in the absence of excitatory input) rather than as a threshold.

- 1) Solving the differential equations as a function of time, show what happens for a few reasonable initial conditions for $\tau_I = 30 \text{ ms}$: Plot v_E and v_I as a function of time for one initial condition, and plot v_I vs. v_E on the phase plane for all cases. Make sure you pick initial conditions appropriate for examining trajectories that cover a large area of phase space.
- 2) Repeat (a) for $\tau_I = 50 \text{ ms}$.
- 3) For (a) and/or (b), when the solution is a stable oscillation, estimate the period of the oscillation. How does that compare to the frequency obtained by dividing the imaginary part of the eigenvalues by 2π using equation 7.53?
- 4) Find the value of τ_1 , to within 1 ms, for which there is a transition between fixed-point and oscillatory behavior, thereby verifying the results obtained analytically in chapter 7 on the basis of equation 7.53. Demonstrate this by plotting trajectories on the phase plane.